Dietary Protein and Healthy Aging: Controversies and Mechanisms

Tracy G. Anthony, Ph.D.
Professor of Nutritional Sciences

Rutgers University
School of Environmental and Biological Sciences

October 18, 2018
States of Amino Acid Nutrition

- Toxicity
- Supplementation
- Adequacy
- Limitation
- Deprivation/depletion
- Devoid

Balanced

Imbalanced

Insufficient for growth; *but is this unhealthy?*
Dietary protein: obsession and controversy

Adapted from:
http://detox-fit.com/fighting-worlds-protein-obsession/
https://hpjmh.com/2011/03/14/where-do-you-get-your-protein/
https://thevegandatabase.com/incomplete-plant-proteins-myth/
Dietary restriction: do macronutrients matter?

Protein Leverage Hypothesis

<table>
<thead>
<tr>
<th>Balance of dietary macronutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low protein: High carbohydrate</td>
</tr>
<tr>
<td>↓ Circulating BCAA: glucose</td>
</tr>
<tr>
<td>↓ mTOR</td>
</tr>
<tr>
<td>↓ Insulin</td>
</tr>
<tr>
<td>↓ Glucose tolerance</td>
</tr>
<tr>
<td>↑ Mitochondrial activity</td>
</tr>
<tr>
<td>↑ Immune function</td>
</tr>
<tr>
<td>↑ Late-life cardiometabolic health</td>
</tr>
<tr>
<td>↑ Food intake</td>
</tr>
<tr>
<td>↑ Lifespan</td>
</tr>
<tr>
<td>↑ Obesity</td>
</tr>
</tbody>
</table>

Cell 161, March 26, 2015

doi: 10.3390/nu8060370
Dietary Paradigms for Metabolic Health and Longevity

- Calorie restriction
- Protein restriction
- Less animal protein, replace with plant protein
- Essential amino acid restriction
- Sulfur amino acid restriction

Diet?

- Psychological & emotional
- Sociological (engaging with life & spirituality)
- Genetic
- Physiological (disease & impairment)

Successful Aging

Ageing Research Reviews 39 (2017) 78–86

Sulfur Amino Acid Restriction (SAAR) extends lifespan and is associated with a lean, metabolically younger phenotype.

Sulfur Amino Acid Restriction: Mechanisms

- Food intake
- EE/Heat
- BW, % Body Fat
- % Lean Mass
- Glucose metabolism
- Lifespan 30-40%
- SNS outflow
- Thyroid function
- FAO
- Insulin sensitivity
de novo lipogenesis, TCA
- Uncoupled respiration
- FGF21
- Adiponectin
- Glucose
- Insulin sensitivity
- Leptin sensitivity
- Energy expenditure
- Body weight
- HPT Axis
- T4, T3
- DIO2, TRα1
- Gut microbiota
- FGF21
What’s so special about SAAR?

- SAAR has stronger metabolic effects versus leucine restriction (LR).

<table>
<thead>
<tr>
<th>Measured after 8 wk:</th>
<th>SAAR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food intake</td>
<td>↑↑ (+38%)</td>
<td>↑ (+22%)</td>
</tr>
<tr>
<td>Body weight</td>
<td>↓↓ (-25%)</td>
<td>↓ (-16%)</td>
</tr>
<tr>
<td>% body fat mass</td>
<td>↓↓ (-30%)</td>
<td>↓ (-22%)</td>
</tr>
<tr>
<td>Fasting insulin</td>
<td>↓↓ (-81%)</td>
<td>↓ (-48%)</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>↓</td>
<td>↔</td>
</tr>
<tr>
<td>Glucose clearance</td>
<td>↑↑</td>
<td>↑</td>
</tr>
<tr>
<td>Circulating FGF21</td>
<td>↑↑↑</td>
<td>↔</td>
</tr>
<tr>
<td>Liver triglyceride content</td>
<td>↓</td>
<td>↔</td>
</tr>
<tr>
<td>Liver lipogenic genes</td>
<td>↓</td>
<td>↔</td>
</tr>
</tbody>
</table>

Potential ways sulfur amino acid restriction improves health span

Antioxidant defenses, mitochondrial function

methylation histones/DNA
phospholipids
neurotransmitters
creatine synthesis

↑ antioxidant defenses, mitochondrial function

Adapted from: https://www.researchgate.net/publication/276164612_Thiol_redox_homeostasis_in_neurodegenerative_disease/figures?lo=1
Proposed Mechanisms for how Dietary Restriction Promotes Healthspan

Adapted from: Mirzaei et al., 2014
Integrated Stress Response

ISR Functions
- Adaptation
- Hormesis
- Preconditioning

Diet
- Vegetables

Drugs
- Asparaginase Epar
- Vial with medication

Genetics
- DNA helix

EMBO Reports (2016) 17: 1374–1395
The ISR Meets the UPR at the ER

- **ISR**
 - GCN2
 - eIF2(P)
 - ATF4
 - mTORC1
 - Autophagy

- **UPR**
 - S1P, S2P
 - MEK
 - ERK
 - JNK(P)
 - IRE1
 - cATF6
 - ATF6

- **Gene Transcription**
 - Gene expression changes
 - Redox status, metabolism, autophagy, cell fate
 - ERAD, chaperones, folding

- **Lysosome**
 - ↓ mTORC1

- **ER**
 - Nucleus
Potential Areas for Collaboration:

Mechanisms linking dietary restriction with aging biology.
- Nutrient sensing pathways (ISR, mTOR)
- Proteostasis control (UPR, autophagy)
- Environmental factors (temperature, light, physical activity/exercise as medicine)
Anthony Lab
William Jonsson, PhD student
Nicholas Margolies, MS
Emily T. Mirek, BS
Inna A. Nikonorova, PhD
Ashley P. Pettit, PhD

Indiana University School of Medicine
Ronald C. Wek, PhD
Robert A. Harris, PhD

University of Iowa School of Medicine
Christopher M. Adams, MD, PhD

Penn State College of Medicine
Scot Kimball, PhD

Colorado State University
Karyn Hamilton, PhD
Benjamin Miller, PhD

Pennington Biomedical Research Center
Thomas Gettys, PhD
Christopher Morrison, PhD

Thank you! Questions?

Funding:

NIH National Institutes of Health
IRACDA-INSPIRE
HD07048
DK109714
DK096311
DK105032

NJ Institute for Food, Nutrition and Health

USDA
NIFA NC1184