Molecular Pathogenesis of Parkinson’s Disease and Therapeutic Strategies

M. Maral Mouradian, M.D.

William Dow Lovett Professor of Neurology
Vice Chancellor for Faculty Development
Director, RWJMS Institute for Neurological Therapeutics
Chief, Division of Translational Neuroscience
Robert Wood Johnson Medical School
Rutgers Biomedical and Health Sciences

Institute for Health, Health Care Policy and Aging Research, RBHS
October 18, 2018
Pathology of Parkinson’s Disease

Control

Parkinson

Lewy body

\(\alpha\)-Synuclein IHC of Lewy bodies
In Vitro Fibrillization of α-Synuclein

WT 300 μM
4 months

A53T 100 μM
1 month

A30P 300 μM
4 months

Conway, Biochemistry 39:2552, 2000
Staging PD: Pre-Symptomatic and Symptomatic Phases

Braak et al, Cell Tissue Res. 318:121, 2004
α-Synuclein Seeding and Propagation

Commonalities of Misfolded Proteins and Hyper-phosphorylated Aggregates in Synucleinopathies and Taupathies

<table>
<thead>
<tr>
<th>Tau</th>
<th>Neurofibrillary tangles</th>
<th>p-tau</th>
<th>p-α-synuclein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyloid plaque</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Image showing Tau and p-τ aggregates with arrows indicating localization]
Consequences of Increased α-Synuclein Levels in Neurons

- Misfolding and aggregation
- Permeabilization of synaptic vesicles leading to dopamine leakage
- Oxidative stress
- Disruption of vesicular trafficking between the endoplasmic reticulum (ER) and the Golgi, causing ER stress
- Interference with autophagy
- Impaired proteasome function
- Interaction with other proteins

Reducing α-synuclein levels can be beneficial
Reducing α-Synuclein Levels as a Therapeutic Strategy

- **Reduce production**
 - Inhibit transcription
 - Inhibit translation

- **Enhance clearance**
 - Autophagy
 - Proteasome
MicroRNA

- Small noncoding RNA molecules
- Regulate gene expression post-transcriptionally
MicroRNA-7 Reduces α-Synuclein Protein Levels and Protects against its Toxicity

Protein Level

- Relative α-Syn Expression (α-Syn/b-actin)
- Pre-miR-7 (nM): 0, 40, 80
- * P < 0.01

Cell Death

- % Cell Death
- Vector, α-Syn-3’UTR

Junn et al, PNAS, 106(31): 13052, 2009
α-Synuclein Phosphorylation as a Therapeutic Target in PD and DLB
Misfolded α-Synuclein is Phosphorylated in α-Synucleinopathies

Human DLB

LB509 Anti-p-Ser129

Fujiwara et al NCB 4:160, 2002

Mice

WT α-SynucleinTg

Anti-p-Ser129

Lee...Mouradian, J. Neurosci. 31: 6963, 2011
α-Synuclein Phosphorylation Promotes its Fibrillization in vitro

Fujiwara et al NCB 4:160, 2002
Therefore,

Decreasing the Phosphorylation State of

\(\alpha \)-Synuclein is a Plausible

Therapeutic Strategy
Casein Kinase I & II
GRK1, 2, 5, and 6
Calmodulin-dependent Kinase II
Polo-like kinase 1, 2, and 3

Serine

PP2A

P-Serine

Kinase

Phosphatase
PP2A B55α is the Major Ser/Thr Phosphatase for α-Synuclein

PP2A Holoenzymes

B

Bα

B′

B″

C

catalytic

A

scaffold

PP2A (nM)

0 12 25 50 100 200

AB55αC

AB′αC

AB′γIC

AB′′C

p-S129 α-Syn

Total α-Syn

Methylation Affects PP2A-B55α Holoenzyme Assembly

Methylated PP2A is more effective in de-phosphorylating α-Synuclein

Dephosphorylate specific Phospho–proteins
An Approach to Promote PP2A Activity

Carboxyl Methylated PP2A

LCMT-1

PME-1

Demethylated PP2A

Deprophosphorylates specific target proteins

Inactive
EHT Keeps PP2A Methylated leading to De-Phosphorylation of α-Synuclein

PP2A Demethylation Inhibitor
EHT Modulates PP2A Methylation and Reduces α-Synuclein Aggregation in α-Syn Transgenic Mice

- Inhibits PP2A demethylation
- Reduces α-synuclein S129 phosphorylation
- Reduces α-synuclein oligomers

EHT Treatment Improves the Neuropathology of α-Synuclein Transgenic Mice

<table>
<thead>
<tr>
<th></th>
<th>Control-WT</th>
<th>Control</th>
<th>EHT (0.01%)</th>
<th>EHT (0.1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Syn</td>
<td>CX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Syn</td>
<td>HP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP2</td>
<td>CX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFAP</td>
<td>CX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What drives hyper-phosphorylation of pathogenic proteins in α-synucleinopathies and tauopathies?
PP2A is De-Methylated in α-Synucleinopathies

Dysregulation of PP2A Methylating Enzymes in α-Synucleinopathies

PP2A is DeMethylated in Tauopathies

- Controls
- PSP
- AD

<table>
<thead>
<tr>
<th>Controls</th>
<th>PSP</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me-PP2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deMe-PP2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total-PP2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

C

D

E

PP2A Methylating Enzymes are Dysregulated in Alzheimer and PSP

Dysregulation of PP2A Methylation Leads to Hyper-Phosphorylation of \(\alpha \)-Synuclein & tau

\(\alpha \)-Synucleinopathy / Tauopathy

- PP2A
- PME-1
- LCMT-1
- \(\alpha \)-Syn
- Tau
- PP2A-Me
- Kinases
- \(\alpha \)-Syn-P
- \(p \)-tau

EHT
Summary

- Considerable molecular similarities exist among neurodegenerative diseases of aging
- Protein misfolding and fibrillization are considered pathogenic
- Increased levels of these proteins and their hyper-phosphorylation accelerate their misfolding
- Both these factors are tractable therapeutic targets for disease prevention and disease modification